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Abstract: We consider the equation due to Richards which models the water flow
in a partially saturated underground porous medium under the surface. We propose a
discretization of this equation by an implicit Euler’s scheme in time and finite elements
in space. We perform the a posteriori analysis of this discretization, in order to improve
its efficiency via time step and mesh adaptivity. Some numerical experiments confirm the
interest of this approach.

Résumé: Nous considérons l’équation dite de Richards qui modélise l’écoulement d’eau
dans un milieu poreux partiellement saturé souterrain, situé juste sous la surface. Nous
écrivons une discrétisation de cette équation par schéma d’Euler implicite en temps et
éléments finis en espace. Nous en effectuons l’analyse a posteriori, le but étant d’améliorer
son efficacité par adaptation du pas de temps et du maillage. Quelques expériences
numériques confirment l’intérêt de cette approche.
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1. Introduction.

The following equation

∂tΘ̃(hw)−∇ · Kw

(
Θ(hw)

)
∇(hw + z) = 0, (1.1)

models the flow of a wetting fluid, mainly water, in the underground surface, hence in an
unsaturated medium, see L.A. Richards [24] for the introduction of this type of models.
In opposite to Darcy’s or Brinkman’s systems (see [22] for all these models), this equation
is highly nonlinear: This follows from the fact that, due to the presence of air above the
surface, the porous medium is only partially saturated with water. Indeed, this model is
derived by combining Darcy’s generalized equation with the mass conservation law: When
denoting by qw the flux of water (also called Darcy’s velocity), these equations read

qw = −Kw

(
Θ(hw)

)
∇(hw + z), ∂tΘ̃(hw) +∇ · qw = 0.

The unknown is the pressure head hw, where the index w means “water”. The coefficients
are the water content Θ and a perturbation of it denoted by Θ̃, the permeability term Kw

here supposed to be scalar, and the height against the gravitational direction, denoted by
z. We refer to [2] for physical values of these coefficients that we use in the numerical
experiments.

The key argument for the analysis of problem (1.1) is to use Kirchoff’s change of
unknowns. Indeed, after this transformation, the new equation fits the general framework
proposed in [1] but is simpler (see also [9] for the analysis of a different model). Thus, the
existence and uniqueness of a solution to this equation when provided with appropriate
initial and boundary conditions are easily derived from standard arguments.

We refer e.g. to [13] and [14] for pioneering papers on the finite element discretizations
of similar problems, and to [8] for the first study of their finite volume discretization. More
recently, several discretizations of Richards equation have been proposed in [11], [21], [26],
[27] and [31], see also [28] for a more general equation. All of them rely on a mixed
formulation of the previous equation, where the flux qw is introduced as a second unknown,
and fully optimal a priori error estimates are derived. We recall this mixed formulation
and its well-posedness. We then propose a discretization that combines the Euler implicit
scheme in time and Raviart–Thomas finite elements in space. We prove the well-posedness
of the discrete problem.

The goal of the present work is to perform the a posteriori error analysis of this
discretization, more precisely to exhibit indicators that uncouple as much as possible the
space and time errors, as first proposed in [3] for time-dependent problems. We prove that
all these indicators satisfy optimal or quasioptimal error estimates. They allow us to adapt
both the time step and the space triangulation in order to optimize the discretization. We
thus derive an efficient strategy for adaptivity, following the approach in [4]. Numerical
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experiments confirm both the efficiency of this strategy and the interest of the discretization
that we propose.

Acknowledgement: This work was partially supported by the GNR MoMaS (PACEN/
CNRS, ANDRA, BRGM, CEA, EdF, IRSN, France).

An outline of the paper is as follows.
• In Section 2, we present the variational formulation of problem (1.1) and investigate its
wellposedness in appropriate Sobolev spaces. We also write its mixed formulation.
• Section 3 is devoted to the description of the time semi-discrete problem and of the fully
discrete problem. We check their well-posedness.
• In Section 4, we propose error indicators. Next, we prove upper and lower bounds of
the error as a function of these indicators.
• Section 5 is devoted to the description of our adaptivity strategy relying on these
indicators and to the presentation of some numerical experiments.
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2. The continuous problem and its well-posedness.

Let Ω be a bounded connected open set in Rd, d = 2 or 3, with a Lipschitz-continuous
boundary ∂Ω, and let n denote the unit outward normal vector to Ω on ∂Ω. We assume
that ∂Ω admits a partition without overlap into two parts ΓD and ΓF , and that ΓD has a
positive measure. Let also T be a positive real number. From now on, we are interested
in the following system

α∂tu+ ∂tb(u)−∇ ·
(
∇u+ k ◦ b(u)ez

)
= 0 in Ω×]0, T [,

u = uD on ΓD×]0, T [,(
∇u+ k ◦ b(u)ez

)
· n = f on ΓF×]0, T [,

u|t=0 = u0 in Ω,

(2.1)

where −ez stands for the unit vector in the direction of gravity. The unknown is now the
quantity u. The coefficients b and k are supposed to be known, and their properties are
made precise later on, while α is a positive constant. The data are the Dirichlet boundary
condition uD on ΓD and the initial condition u0 on Ω, together with the boundary condition
f on the normal component of the flux.

Remark 2.1. The links between equation (1.1) and the first line of system (2.1) follow
from Kirchoff’s change of unknowns. Indeed, since the conductivity coefficient Kw is
positive, the mapping:

x 7→ K(x) =

∫ x

0

Kw

(
Θ(ξ)

)
dξ,

is one-to-one from R into itself. Thus, by setting

u = K(hw), b(u) = Θ ◦ K−1(u), k ◦ b(u) = Kw ◦Θ ◦ K−1(u),

we easily derive the equivalence of (1.1) and the first line of (2.1), for a specific choice of

the difference Θ̃ − Θ which is made for mathematical simplicity (see e.g. [31] for a more
realistic case where the quantity α∂tu is replaced by α∂t max{u, 0}). We refer to [25] and
[26, §1] for more details. It can be observed that the quantity u has no physical meaning,
so that returning to the unknown hw is needed at the end of each computation. However
the importance of using Kirchoff’s change of unknowns for degenerate problems has been
brought to light in [31].

In what follows, we use the whole scale of Sobolev spaces Wm,p(Ω), with m ≥ 0 and
1 ≤ p ≤ +∞, equipped with the norm ‖ · ‖Wm,p(Ω) and seminorm | · |Wm,p(Ω), with the
usual notation Hm(Ω) when p = 2. For any separable Banach space E equipped with the
norm ‖ · ‖E , we denote by C 0(0, T ;E) the space of continuous functions from [0, T ] with
values in E. For each integer m ≥ 0, we also introduce the space Hm(0, T ;E) as the space
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of measurable functions on ]0, T [ with values in E such that the mappings: v 7→ ‖∂`tv‖E ,
0 ≤ ` ≤ m, are square-integrable on ]0, T [. Finally, we need the spaces L∞(Ω) and
L∞(Ω×]0, T [) of essentially bounded functions on Ω and Ω×]0, T [, respectively. We are
led to make the following assumption concerning the coefficients and the data.

Assumption 2.2.
(i) The mapping b is of class C 1, non-decreasing and globally Lipschitz–continuous on R,
with Lipschitz constant cb;
(ii) The mapping: x 7→ k ◦ b(x) is continuous, bounded on R and satisfies for a constant ck

∀x1 ∈ R,∀x2 ∈ R,
∣∣k ◦ b(x1)− k ◦ b(x2)

∣∣2 ≤ ck (b(x1)− b(x2)
)
(x1 − x2); (2.2)

(iii) The function u0 belongs to H1(Ω);
(iv) The function uD admits a lifting, still denoted by uD for simplicity, which belongs to
L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) and satisfies uD(·, 0) = u0;
(v) The function f belongs to H1(0, T ;L2(ΓF )).

In order to take into account the boundary condition on ΓD, we now introduce the
space

H1
D(Ω) =

{
v ∈ H1(Ω); v = 0 on ΓD

}
. (2.3)

We denote by H−1
D (Ω) its dual space and by 〈·, ·〉 the duality pairing between H−1

D (Ω) and
H1
D(Ω). Next, we consider the following variational problem

Find u in L2(0, T ;H1(Ω)) with ∂tu in L2(0, T ;H−1
D (Ω)) such that

u = uD on ΓD×]0, T [ and u|t=0 = u0 in Ω, (2.4)

and, for a.e. t in ]0, T [,

∀v ∈ H1
D(Ω), α 〈∂tu(·, t), v〉+ 〈∂tb(u)(·, t), v〉

+

∫
Ω

(
∇u+ k ◦ b(u)ez

)
(x, t) · (∇v)(x) dx =

∫
ΓF

f(τ , t)v(τ ) dτ .
(2.5)

Indeed, the equivalence of such a problem with system (2.1) (in the distribution sense)
only requires that the partition of ∂Ω into ΓD and ΓF is sufficiently smooth (in order that
D(Ω ∪ ΓF ) is dense into H1

D(Ω)).

If Assumption 2.2 is satisfied, the mapping bα defined by

bα(x) = b(x) + αx, (2.6)

is one-to-one from R into itself. So, by using the further change of unknown vα = bα(u),
we can prove the existence result in a simple way by applying the Cauchy–Lipschitz the-
orem and using the separability of the space L2(0, T ;H1(Ω)). The uniqueness is then a
consequence of Gronwall’s lemma. We refer to [18, §2.1] for a detailed proof of these results
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relying on the monotonicity of the function b. Note that part of Assumption 2.2 can be
weakened for this. However, we have no applications for these weaker properties.

Theorem 2.3. If Assumption 2.2 is satisfied, problem (2.4)− (2.5) has a unique solution
u. Moreover, the quantities ∂tu and ∂tb(u) belong to L2(0, T ;L2(Ω)).

Remark 2.4. In the more complex case where α = 0, the existence and uniqueness of a
less regular solution can be derived thanks to the arguments in [1, Thms 2.3 & 2.4] (see
also [12] for a similar proof in the case of a biphasic flow water–air). However, this requires
slightly different assumptions on the coefficients and the data.

To go further, we prove an a priori estimate for the solution u exhibited in Theorem
2.3.

Proposition 2.5. If Assumption 2.2 is satisfied, the following estimate holds for the
solution u of problem (2.4)− (2.5), for all t in ]0, T [,

α ‖u(·, t)‖2L2(Ω) +

∫ t

0

|u(·, s)|2H1(Ω) ds

≤ c
(
t+ ‖uD‖2L2(0,T ;H1(Ω))∩H1(0,T ;L2(Ω)) + ‖f‖2L2(0,T ;L2(ΓF ))

)
.

(2.7)

Proof: We set:

u(x, t) = uD(x, t) + u∗(x, t), b∗(w) = b(uD + w).

Thus, it is readily checked that u∗ belongs to L2(0, T ;H1
D(Ω)) and satisfies

∀v ∈ H1
D(Ω), α 〈∂tu∗(·, t), v〉+ 〈∂tb∗(u∗)(·, t), v〉

+

∫
Ω

(
∇u∗ + k ◦ b∗(u∗)ez

)
(x, t) · (∇v)(x) dx = Lt(v),

where the linear form Lt, defined by

Lt(v) = −α 〈∂tuD(·, t), v〉 −
∫

Ω

(
∇uD

)
(x, t) · (∇v)(x) dx+

∫
ΓF

f(τ , t)v(τ ) dτ ,

is obviously continuous on H1
D(Ω), with norm c(t) satisfying for a.e. t in ]0, T [,

c(t) ≤ α ‖∂tuD(·, t)‖H−1
D

(Ω) + |uD(·, t)|H1(Ω) + c ‖f(·, t)‖L2(ΓF ).

Next, we take v equal to u∗(·, t) and integrate the equation with respect to t. Since b′∗ is
nonnegative, this leads to (note that u∗ vanishes at t = 0)

α ‖u∗(·, t)‖2L2(Ω) +

∫ t

0

|u∗(·, s)|2H1(Ω) ds ≤ c
(
t+

∫ t

0

c(s)2 ds
)
.
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We conclude by using the properties of uD.

In view of the discretization, we finally introduce a mixed formulation of problem
(2.4) − (2.5). To this aim, we consider the domain H(div,Ω) of the divergence operator,
namely

H(div,Ω) =
{
ϕ ∈ L2(Ω)d; ∇ · ϕ ∈ L2(Ω)

}
, (2.8)

equipped with the graph norm. Since the normal trace operator: ϕ 7→ ϕ · n can be
defined from H(div,Ω) onto H−

1
2 (∂Ω), see e.g. [15, Chap. I, Thm 2.5], and its restriction

to ΓF maps H(div,Ω) into the dual space of H
1
2
00(ΓF ) (see [19, Chap. 1, Th. 11.7] for the

definition of this last space), we also introduce the space

HF (div,Ω) =
{
ϕ ∈ H(div,Ω); ϕ · n = 0 on ΓF

}
. (2.9)

The mixed variational problem then reads

Find (u, q) in L2(0, T ;L2(Ω)) × L2(0, T ;H(div,Ω)) with ∂tu in L2(0, T ;L2(Ω)) such
that

q · n = −f on ΓF×]0, T [ and u|t=0 = u0 in Ω, (2.10)

and, for a.e. t in ]0, T [,

∀w ∈ L2(Ω), α

∫
Ω

(
∂tu
)
(x, t)w(x) dx+

∫
Ω

(
∂tb(u)

)
(x, t)w(x) dx

+

∫
Ω

(
∇ · q

)
(x, t)w(x) dx = 0,

∀ϕ ∈ HF (div,Ω),

∫
Ω

q(x, t) · ϕ(x) dx−
∫

Ω

u(x, t)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b(u)

)
(x, t)ez · ϕ(x) dx = −〈uD(·, t),ϕ · n〉ΓD ,

(2.11)

where 〈·, ·〉ΓD now denotes the duality pairing between H
1
2 (ΓD) and its dual space. We

now check its equivalence with problem (2.4)− (2.5).

Proposition 2.6. If Assumption 2.2 is satisfied, problems (2.4)− (2.5) and (2.10)− (2.11)
are equivalent, in the following sense:
(i) For any solution u of (2.4)− (2.5), there exists a function q in L2(0, T ;H(div,Ω)) such
that the pair (u, q) is a solution of problem (2.10)− (2.11);
(ii) For any solution (u, q) of (2.10) − (2.11), the function u belongs to L2(0, T ;H1(Ω))
and is a solution of problem (2.4)− (2.5).

Proof: We check successively the two assertions of the proposition.
1) Let u be a solution of problem (2.4) − (2.5). Letting v run through D(Ω) yields the
first line of system (2.1) and letting v run through D(Ω ∪ ΓF ) yields the third line of
this system. Thus, the function q = −∇u − k ◦ b(u)ez belongs to L2(0, T ;L2(Ω)d) and,
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since ∂tu and ∂tb(u) belong to L2(0, T ;L2(Ω)) thanks to Theorem 2.3, the same property
holds for ∇ · q. All this yields that q belongs to L2(0, T ;H(div,Ω)) and also satisfies
the first part of (2.10). Moreover, multiplying the first line of (2.1) by any function w
in D(Ω) and using the density of D(Ω) in L2(Ω), we derive the first equation in (2.11).
The second equation follows by multiplying the equation q = −∇u − k ◦ b(u)ez by any
ϕ in HF (div,Ω) and integrating by parts thanks to the Stokes formula. Thus, (u, q) is a
solution of (2.10)− (2.11).
2) Conversely, let (u, q) be a solution of problem (2.10) − (2.11). Letting ϕ run through
D(Ω)d in the second line of (2.11) yields the equation

q = −∇u− k ◦ b(u)ez, (2.12)

and letting it run through D(Ω ∪ ΓD)d leads to the boundary condition u = uD on ΓD.
Thus, since the mapping k is bounded, it follows from the previous equation that u belongs
to L2(0, T ;H1(Ω)) and satisfies (2.4). On the other hand, equation (2.5) follows from the
first equation in (2.11), by taking w in H1

D(Ω) and using the first part of (2.10) and
equation (2.12). Thus, u is a solution of (2.4)− (2.5).

The following corollary is now a direct consequence of Theorem 2.3 and Proposition
2.6.

Corollary 2.7. If Assumption 2.2 is satisfied, problem (2.10)−(2.11) has a unique solution
(u, q).

Note that, in contrast with u, the flux q has a physical meaning. Indeed, it follows
from Remark 2.1 that q is equal to −Kw

(
Θ(hw)

)
∇(hw + z), which is the flux in problem

(1.1).
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3. The discrete problem and its well-posedness.

As already explained in Section 1, we propose a discretization of the problem in two
steps: time semi-dicretization, full discretization. The next analysis requires hypotheses
which are slightly stronger than Assumption 2.2 but still not restrictive.

Assumption 3.1.
(i) The mappings b and k and the data u0, uD, and f satisfy Assumption 2.2;
(ii) The function k is Lipschitz–continuous on R, with Lipschitz constant c∗k;
(iii) The function uD belongs to C 0(0, T ;H1(Ω)).

3.1. The time semi-discrete problem.

Since we intend to work with non uniform time steps, we introduce a partition of the
interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such that 0 = t0 < t1 < · · · < tN = T .
We denote by τn the time step tn − tn−1, by τ the N -tuple (τ1, . . . , τN ) and by |τ | the
maximum of the τn, 1 ≤ n ≤ N .

As already hinted in Section 1, the time discretization mainly relies on a backward
Euler’s scheme, where the nonlinear term k◦b(u) is treated in an explicit way for simplicity.
Thus, the semi-discrete problem reads

Find (un)0≤n≤N in L2(Ω)N+1 and (qn)1≤n≤N in H(div,Ω)N such that

qn · n = −f(·, tn) on ΓF , 1 ≤ n ≤ N, and u0 = u0 in Ω, (3.1)

and, for 1 ≤ n ≤ N ,

∀w ∈ L2(Ω),

α

∫
Ω

(un − un−1

τn

)
(x)w(x) dx+

∫
Ω

(b(un)− b(un−1)

τn

)
(x)w(x) dx

+

∫
Ω

(
∇ · qn

)
(x)w(x) dx = 0,

∀ϕ ∈ HF (div,Ω),

∫
Ω

qn(x) · ϕ(x) dx−
∫

Ω

un(x)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b(un−1)

)
(x)ez · ϕ(x) dx = −〈uD(·, tn),ϕ · n〉ΓD .

(3.2)

It can be noted that this problem makes sense since both uD and f are continuous in time.
Proving its well-posedness relies on rather different arguments as previously.

Proposition 3.2. Assume the partition {ΓD,ΓF } of ∂Ω sufficiently smooth for D(Ω∪ΓF )
to be dense in H1

D(Ω). If Assumption 3.1 is satisfied, problem (3.1) − (3.2) has a unique
solution (un, qn)n.
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Proof: We proceed by induction on n and deduce from the same arguments as for Propo-
sition 2.6 that, at each step n, 1 ≤ n ≤ N , problem (3.1) − (3.2) admits the equivalent
formulation: Find un in H1(Ω), with un equal to uD(·, tn) on ΓD, such that

∀v ∈ H1
D(Ω), α 〈u

n − un−1

τn
, v〉+ 〈b(u

n)− b(un−1)

τn
, v〉

+

∫
Ω

(
∇un + k ◦ b(un−1)ez

)
(x) · (∇v)(x) dx

=

∫
ΓF

f(τ , tn)v(τ ) dτ .

(3.3)

We check successively the uniqueness and the existence of the solution.
1) Let (un, qn)n and (ũn, q̃n)n be two solutions of problem (3.1) − (3.2). Due to the
induction hypothesis, the function un − ũn satisfies, for all v in H1

D(Ω),

α 〈u
n − ũn

τn
, v〉+ 〈b(u

n)− b(ũn)

τn
, v〉+

∫
Ω

(
∇(un − ũn)

)
(x) · (∇v)(x) dx = 0.

Thus, taking v equal to un− ũn (which belongs to H1
D(Ω)) and recalling that the product(

b(un) − b(ũn)
)
(un − ũn) is nonnegative, we obtain that un and ũn are equal. Then, by

using the second equation in problem (3.2), we deduce that qn and q̃n coincide, whence
the uniqueness result.
2) Due to the induction hypothesis and by setting: un = un∗ +uD(·, tn), we must prove the
existence of a solution for the problem: Find un∗ in H1

D(Ω) such that

∀v ∈ H1
D(Ω), α

∫
Ω

un∗ (x)v(x) dx+

∫
Ω

b(un∗ (x) + uD(x, tn))v(x) dx

+ τn

∫
Ω

(∇un∗ )(x) · (∇v)(x) dx = Ln(v),

where Ln is a linear form continuous on H1
D(Ω). We perform the proof in several steps.

• We define the mapping Φ from H1
D(Ω) into its dual space by duality:

∀v ∈ H1
D(Ω), 〈Φ(w), v〉 = α

∫
Ω

w(x)v(x) dx+

∫
Ω

b(w(x) + uD(x, tn))v(x) dx

+ τn

∫
Ω

(∇w)(x) · (∇v)(x) dx− Ln(v).

The mapping Φ is clearly continuous on H1
D(Ω). Moreover, by noting that the quantity

b(w + uD(·, tn))w is greater than b(uD(·, tn))w and that b is Lipschitz–continuous, we
observe that

〈Φ(w), w〉 ≥ α ‖w‖2L2(Ω) + τn |w|2H1(Ω) − cn ‖w‖L2(Ω),

where the constant cn only depends on the norm of Ln, the Lipschitz constant cb and the
norm of uD(·, tn). Thus, the quantity 〈Φ(w), w〉 is nonnegative on the “ellipse”

α

2
‖w‖2L2(Ω) + τn |w|2H1(Ω) =

c2n
2α
.
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• It follows from the density assumption that there exists an increasing sequence (Hm)m
of finite-dimensional subspaces of H1

D(Ω) such that ∪m∈NHm is dense in H1
D(Ω). The

restriction of the mapping Φ to each Hm obviously satisfies the same properties as previ-
ously, so that applying Brouwer’s fixed point theorem (see [15, Chap. IV, Corollary 1.1]
for instance) yields the existence of a function um in Hm such that

∀vm ∈ Hm, 〈Φ(um), vm〉 = 0 and
α

2
‖um‖2L2(Ω) + τn |um|2H1(Ω) ≤

c2n
2α
.

• Since the sequence (um)m is bounded in H1(Ω), there exists a subsequence, still denoted
by (um)m for simplicity, which converges to a limit weakly in H1(Ω) and strongly in L2(Ω).
We denote this limit by un∗ . On the other hand, the subsequence satisfies for m ≥ k

∀vk ∈ Hk, α

∫
Ω

um(x)vk(x) dx+

∫
Ω

b(um(x) + uD(x, tn))vk(x) dx

+ τn

∫
Ω

(∇um)(x) · (∇vk)(x) dx = Ln(vk).

(3.4)

Passing to the limit in the linear terms is easy. We also derive from the Lipschitz property
of b that

‖b(um + uD(tn))− b(un∗ + uD(tn))‖L2(Ω) ≤ c ‖um − un∗‖L2(Ω),

whence the convergence of the nonlinear term. Thus, the function un∗ still satisfies equation
(3.4) for all vk in Hk, whence, owing to the density of ∪k∈NHk in H1

D(Ω), for all v in H1
D(Ω).

Thus, the pair (un, qn), with un = un∗ + uD(·, tn) and qn = −∇un − k ◦ b(un−1)ez is a
solution of problem (3.1)− (3.2), which concludes the proof.

In analogy with Proposition 2.5, we prove a stability property of the solution (un, qn)
which is needed later on.

Lemma 3.3. If Assumption 3.1 is satisfied, the following estimate holds for the solutions
(un, qn) of problems (3.1)− (3.2), 1 ≤ n ≤ N ,

(
α

n∑
m=1

τm ‖
um − um−1

τm
‖2L2(Ω)

) 1
2

+ |un|H1(Ω)

≤ c
(√

n+ |u0|H1(Ω)

+
( n∑
m=1

τm ‖
uD(·, tm)− uD(·, tm−1)

τm
‖2L2(Ω)

) 1
2

+
( n∑
m=1

|uD(·, tm)|2H1(Ω)

) 1
2

+
( n∑
m=1

‖f(·, tm)‖2L2(ΓF )

) 1
2

)
.

(3.5)
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Proof: Setting as previously un = un∗ + uD(·, tn), we observe that problem (3.2) can
equivalent be written as

∀v ∈ H1
D(Ω), α 〈u

n
∗ − un−1

∗
τn

, v〉+ 〈b(u
n
∗ + uD(·, tn))− b(un−1

∗ + uD(·, tn))

τn
, v〉

+

∫
Ω

(
∇un∗ + k ◦ b(un−1)ez

)
(x) · (∇v)(x) dx = 〈gn, v〉,

where the quantity gn is defined by

〈gn, v〉 = −α 〈uD(·, tn)− uD(·, tn−1)

τn
, v〉

− 〈
b
(
un−1
∗ + uD(·, tn)

)
− b
(
un−1
∗ + uD(·, tn−1)

)
τn

, v〉

−
∫

Ω

(∇uD)(x, tn) · (∇v)(x) dx+

∫
ΓF

f(τ , tn)v(τ ) dτ .

Thus, taking v equal to un∗ − un−1
∗ , noting that the quantity

〈b(un∗ + uD(·, tn))− b(un−1
∗ + uD(·, tn)), un∗ − un−1

∗ 〉

is nonnegative and using the formula

∇un∗ · ∇(un∗ − un−1
∗ ) =

1

2

(
|∇(un∗ − un−1

∗ )|2 + |∇un∗ |2 − |∇un−1
∗ |2

)
,

together with the boundedness of the mapping k lead to, with gn = gn1 + gn2 ,

α τn ‖
un∗ − un−1

∗
τn

‖2L2(Ω) +
1

2
|un∗ |2H1(Ω) +

1

2
|un∗ − un−1

∗ |2H1(Ω)

≤ 1

2
|un−1
∗ |2H1(Ω) + (c+ ‖gn1 ‖H−1

D
(Ω))|u

n
∗ − un−1

∗ |H1(Ω) + τn ‖gn2 ‖L2
D

(Ω)‖
un∗ − un−1

∗
τn

‖L2(Ω).

By using the inequality ab ≤ 1
2 (a2 + b2) and summing on the n, we obtain

α

2

n∑
m=1

τm ‖
um∗ − um−1

∗
τm

‖2L2(Ω) +
1

2
|un∗ |2H1(Ω)

≤ cn+
n∑

m=1

‖gm1 ‖2H−1
D

(Ω)
+

1

2α

n∑
m=1

τm ‖gm2 ‖2L2
D

(Ω).

We conclude thanks to an appropriate choice of gn1 and gn2 and by using a triangle inequality.
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Remark 3.4. From now on, we denote by c0(τ) the maximum of the quantities that
appear in the right-hand side of estimate (3.5), namely

c0(τ) = c

(√
N + |u0|H1(Ω)

+
( N∑
m=1

τm ‖
uD(·, tm)− uD(·, tm−1)

τm
‖2L2(Ω)

) 1
2

+
( N∑
m=1

|uD(·, tm)|2H1(Ω)

) 1
2

+
( N∑
m=1

‖f(·, tm)‖2L2(ΓF )

) 1
2

)
.

(3.6)

There is no reason for the last terms in this quantity to be bounded independently of τ .
Assumption 3.1 only implies that

c0(τ) ≤ c
√
N. (3.7)

3.2. The fully discrete problem.

From now on, we assume that Ω is a polygon (d = 2) or a polyhedron (d = 3). For
each n, 0 ≤ n ≤ N , let (T nh )hn be a regular family of triangulations of Ω (by triangles or
tetrahedra), in the sense that, for each hn:
• Ω is the union of all elements of T nh ;
• The intersection of two different elements of T nh , if not empty, is a vertex or a whole
edge or a whole face of both of them;
• The ratio of the diameter hK of any element K of T nh to the diameter of its inscribed
circle or sphere is smaller than a constant σ independent of h and n.
As usual, hn stands for the maximum of the diameters hK , K ∈ T nh . We make the further
and non restrictive assumption that both ΓD and ΓF are the union of whole edges (d = 2)
or whole faces (d = 3) of elements of T nh .

We now introduce two finite element spaces, first the space Xnh:

Xnh =
{
vh ∈ L2(Ω); ∀K ∈ T nh , vh|K ∈ P0(K)

}
, (3.8)

where P0(K) is the space of constant functions on K, next the space Ynh associated with
Raviart–Thomas finite elements [23]:

Ynh =
{
ϕh ∈ H(div,Ω); ∀K ∈ T nh , ϕh|K ∈ RT (K)

}
, (3.9)

where RT (K) stands for the space of restrictions to K of polynomials of the form α+β x,
α ∈ Rd, β ∈ R. In order to take into account the boundary conditions, we also need its
subspace

YnhF = Ynh ∩HF (div,Ω). (3.10)
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Recalling that normal traces of elements of Ynh on ∂Ω are piecewise constant, we define
for each n, 1 ≤ n ≤ N , an approximation fnh of f(·, tn) by

∀K ∈ T nh , fnh |K∩ΓF =
1

meas(K ∩ ΓF )

∫
K∩ΓF

f(τ , tn) dτ . (3.11)

Similarly, we define u0h as the image of u0 by the orthogonal projection operator from
L2(Ω) onto X0

h. As standard for the discretization of parabolic equations with different
triangulations, we also introduce the orthogonal projection operator Πn

h from L2(Ω) onto
the space Xnh.

We are thus in a position to write the discrete problem, constructed from problem
(3.1)− (3.2) by the Galerkin method,

Find (unh)0≤n≤N in
∏N
n=0 Xnh and (qnh)1≤n≤N in

∏N
n=1 Ynh such that

qnh · n = −fnh on ΓF , 1 ≤ n ≤ N, and u0
h = u0h in Ω, (3.12)

and, for 1 ≤ n ≤ N ,

∀wh ∈ Xnh,

α

∫
Ω

(unh − un−1
h

τn

)
(x)wh(x) dx+

∫
Ω

(b(unh)− b(un−1
h )

τn

)
(x)wh(x) dx

+

∫
Ω

(
∇ · qnh

)
(x)wh(x) dx = 0,

∀ϕh ∈ YnhF ,∫
Ω

qnh(x) · ϕh(x) dx−
∫

Ω

unh(x)(∇ ·ϕh)(x) dx

+

∫
Ω

Πn
h

(
k ◦ b(un−1

h )
)
(x)ez · ϕh(x) dx = −

∫
ΓD

uD(τ , tn)(ϕh · n)(τ ) dτ .

(3.13)

Remark 3.5. Owing to the definition of Πn
h, the quantities un−1

h and b(un−1
n ) can be re-

placed by Πn
hu

n−1
h and Πn

hb(u
n−1
n ) in (3.13) without modifying the discrete problem. More-

over, since un−1
h is piecewise constant, computing Πn

hg(un−1
h ) for any continuous function

g is not expensive at all. Indeed, we have the formula, for all K in T nh ,

(
Πn
hg(un−1

h )
)
|K =

1

meas(K)

∑
K′∈T n−1

h

meas(K ′ ∩K) g(un−1
h )|K′ . (3.14)

Thus, where the mesh is only refined, i.e., for the K in T nh which are contained in one
element of T n−1

h ,
(
Πn
hg(un−1

h )
)
|K coincides with g(un−1

h )|K . It must also be noted that,
in practice, the operator Πn

h is often replaced by the Lagrange interpolation operator. We
avoid to present this modification for simplicity.
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Fortunately, proving the well-posedness of this problem is easier than for the previous
ones.

Proposition 3.6. If Assumption 3.1 is satisfied, each problem (3.12)− (3.13), 1 ≤ n ≤ N ,
has a unique solution (unh, q

n
h).

Proof: There also, we proceed by induction on n and check successively the uniqueness
and the existence of the solution.
1) Let (unh, q

n
h) and (ũnh, q̃

n
h) be two solutions of problem (3.12)− (3.13). Their difference

satisfies

∀wh ∈ Xnh, α

∫
Ω

(unh − ũnh
τn

)
(x, )wh(x) dx+

∫
Ω

(b(unh)− b(ũnh)

τn

)
(x)wh(x) dx

+

∫
Ω

(
∇ · (qnh − q̃nh)

)
(x)wh(x) dx = 0,

∀ϕh ∈ YnhF ,
∫

Ω

(qnh − q̃nh)(x) · ϕh(x) dx−
∫

Ω

(unh − ũnh)(x)(∇ ·ϕh)(x) dx = 0.

(3.15)

When taking wh equal to unh − ũnh and ϕh equal to qnh − q̃nh , summing the two equations
and noting that

(
b(unh)− b(ũnh)

)
(unn − ũnh) is nonnegative, we obtain

α

τn
‖unh − ũnh‖2L2(Ω) + ‖qnh − q̃nh‖2L2(Ω)d ≤ 0.

So, (unh, q
n
h) and (ũnh, q̃

n
h) are equal.

2) We introduce a lifting χnh of fnh in the following way: If Enh denotes the set of all edges
(d = 2) or faces (d = 3) of elements of T nh and EnFh its subset made of all edges or faces
contained in ΓF , there exists a unique function χnh in Ynh such that

χnh · n =

{
fnh on e ∈ EnFh ,
0 on e ∈ Enh \ EnFh ,

(indeed, these degrees of freedom are RT (K)-unisolvent on each K, see [23]). Next, we
define the mapping Ψ on Xnh × YnhF by

∀(wh,ϕh) ∈ Xnh × YnhF ,

〈Ψ(uh, qh), (wh,ϕh)〉 = α

∫
Ω

(uh
τn

)
(x)wh(x) dx+

∫
Ω

(b(uh)

τn

)
(x)wh(x) dx

+

∫
Ω

(
∇ · qh

)
(x, t)wh(x) dx+

∫
Ω

qh(x) · ϕh(x) dx

−
∫

Ω

uh(x)(∇ ·ϕh)(x) dx−Mn(wh,ϕh),
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where the linear form Mn(·, ·) is defined by

Mn(wh,ϕh) = α

∫
Ω

(Πn
hu

n−1
h

τn

)
(x)wh(x) dx+

∫
Ω

(Πn
hb(u

n−1
h )

τn

)
(x)wh(x) dx

−
∫

Ω

(
∇ · χnh

)
(x, t)wh(x) dx−

∫
Ω

χnh(x) · ϕh(x) dx

−
∫

Ω

(
Πn
hk ◦ b(un−1

h )
)
(x)ez · ϕh(x) dx−

∫
ΓD

uD(τ , tn)(ϕh · n)(τ ) dτ .

When the space Xnh ×YnhF is equipped with the norm of L2(Ω)×H(div,Ω), the mapping
Ψ is continuous and satisfies

〈Ψ(uh, qh), (uh, qh)〉 ≥ α

τn
‖uh‖2L2(Ω) + ‖qh‖2L2(Ω)d − Cn

( α
τn
‖uh‖2L2(Ω) + ‖qh‖2H(div,Ω)

) 1
2 ,

where Cn only depends on the norm of Mn in an appropriate dual space. So, using the
fact that on the finite-dimensional space Xnh × YnhF all norms are equivalent and applying
once more Brouwer’s fixed point theorem yield the existence of a pair (unh, q

n
h∗) such that

∀(wh,ϕh) ∈ Xnh × YnhF , 〈Ψ(unh, q
n
h∗), (wh,ϕh)〉 = 0.

Then, the pair (unh, q
n
h = qnh∗ + χnh) is a solution of problem (3.12)− (3.13).

Since our aim is adaptivity of the time steps and the triangulations, we do not prove
a priori error estimates for the semi-discrete and discrete problems. We refer to [13], [14],
[21], and [26] for these estimates in the case of very similar problems or discretizations.
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4. A posteriori analysis of the discretization.

We first recall some notation which is standard in the a posteriori analysis of finite
element discretization. Next, we give the definition of two families of indicators linked
respectively to the time semi-discretization and to the finite element discretization. We
then prove successively upper and lower bounds for the error. All these estimates are
summed up in a conclusion.

We also make precise the new assumptions that are needed in this section.

Assumption 4.1.
(i) The mappings b and k and the data u0, uD, and f satisfy Assumption 3.1;
(ii) The mapping b is of class C 2 on R with bounded and Lipschitz-continuous derivatives;
(iii) The mapping k is of class C 1 on R with bounded and Lipschitz-continuous derivative;
(iv) The function u0 belongs to L∞(Ω);
(v) The function uD is continuous on [0, T ]× ΓD.

4.1. Some notation.

Foe each n, 1 ≤ n ≤ N , and with each K in T nh , we associate
(i) the set E0

K of all edges (d = 2) or faces (d = 3) of K which are not contained in ∂Ω;
(ii) the sets EDK and EFK of all edges (d = 2) or faces (d = 3) of K which are contained in
ΓD and ΓF , respectively;
(iii) the domain ωK equal to the union of all elements of T nh that share at least an edge
(d = 2) or a face (d = 3) with K.
For each e in E0

K , we denote by [·]e the jump through e (the introduction of a vector normal
to e is necessary to make precise the sign of this jump, however we do not need it in what
follows).

With each family of values (vn), 0 ≤ n ≤ N , we associate the function vτ which is
affine on each interval [tn−1, tn], 1 ≤ n ≤ N , and equal to vn in tn, 0 ≤ n ≤ N . For each
function v continuous on [0, T ], we also introduce the functions π+

τ v and π−τ v which are
constant, equal to v(tn) and v(tn−1), respectively, on each interval ]tn−1, tn], 1 ≤ n ≤ N .
For brevity, we use the notation π±τ v = π±τ vτ .

Finally, we introduce an approximation unDh of uD(·, tn) on ΓD: For each K in T nh
and each edge (d = 2) or face (d = 3) e in EDK , the restriction of unDh to e is equal to the
Lagrange interpolate in P1(e) of uD(·, tn).

4.2. The error indicators.

For the reasons explained above, we consider two families of error indicators. All of
them are defined for each n, 1 ≤ n ≤ N , and for each K in T nh .
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(i) Error indicators linked to the time discretization

η
n(τ)
K = τ

1
2
n ‖unh − un−1

h ‖L2(K) + τ
1
2
n ‖

b(unh)− b(un−1
h )

τn
−Bnh

unh − u
n−1
h

τn
‖L2(K), (4.1)

where the function Bnh is defined on each K as
b′(Πnhu

n−1
h

)+b′(unh)

2 .

(ii) Error indicators linked to the space discretization

η
n(h)
K = τ

1
2
n ‖α

unh −Πn
hu

n−1
h

τn
+
b(unh)−Πn

hb(u
n−1
h )

τn
+∇ · qnh‖L2(K)

+ τ
1
2
n ‖qnh + Πn

hk ◦ b(un−1
h )ez‖L2(K)d

+
∑
e∈E0

K

τ
1
2
n h
− 1

2
e ‖[unh]e‖L2(e) +

∑
e∈ED

K

τ
1
2
n h
− 1

2
e ‖unh − unDh‖L2(e).

(4.2)

It can be noted that all these indicators only depend on the discrete solution (unh, q
n
h)n

and are very easy to compute (only polynomials of degree at most 1 appear in the norms).
However the terms involving un−1

h are reinterpolated on the new mesh T nh thanks to the
operator Πn

h.

4.3. Upper bounds for the error.

As now standard for multi-step discretizations (see [3] for the introduction of this
approach), we proceed in two steps, in order to uncouple the two sources of error. Due
to the nonlinearity of all problems, we use the theorem due to Pousin and Rappaz [20] at
each step.

With the notation presented in Section 4.1, we first estimate the norm of the term
(u− uτ , q − π+

τ q). We introduce the subspace

X = H1(0, T ;L2(Ω)). (4.3)

Indeed, it is clear that the mapping F = (F1,F2) defined with the notation U = (u, q)
and for a.e. t in [0, T ] by

∀w ∈ L2(Ω), 〈F1(U)(t), w〉 = α

∫
Ω

(∂tu)(x, t)w(x) dx+

∫
Ω

(
∂tb(u)

)
(x, t)w(x) dx

+

∫
Ω

(
∇ · q

)
(x, t)w(x) dx,

∀ϕ ∈ HF (div,Ω), 〈F2(U)(t),ϕ〉 =

∫
Ω

q(x, t) · ϕ(x) dx−
∫

Ω

u(x, t)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b(u)

)
(x, t)ez · ϕ(x) dx+ 〈uD,ϕ · n〉ΓD ,

(4.4)
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is continuous from X × L2(0, T ;HF (div,Ω)) into L2(0, T ;L2(Ω)) × L2(0, T ;HF (div,Ω)′).
Unfortunately, it is only differentiable on a smaller domain, as stated in the next lemma.
We now introduce the space L of linear mappings from X × L2(0, T ;HF (div,Ω)) into
L2(0, T ;L2(Ω))× L2(0, T ;HF (div,Ω)′).

Lemma 4.2. If Assumption 4.1 is satisfied, the mapping F is continuously differentiable
on the space Y× L2(0, T ;H(div,Ω)) with values in L , where the space Y is given by

Y = H1(0, T ;L∞(Ω)). (4.5)

Moreover, the mapping: V 7→ DF(V ) is locally Lipschitz-continuous on this same space.

Proof: We have, for any Z = (z,ψ) in X× L2(0, T ;H(div,Ω)),

〈DF1(U)(t) · Z,w〉 =

∫
Ω

(
α+ b′(u)

)
(x, t)

(
∂tz
)
(x, t)w(x) dx

+

∫
Ω

b′′(u)(x, t)z(x, t)
(
∂tu
)
(x, t)w(x) dx+

∫
Ω

(
∇ · ψ

)
(x, t)w(x) dx,

〈DF2(U)(t) · Z,ϕ〉 =

∫
Ω

ψ(x, t) · ϕ(x) dx−
∫

Ω

z(x, t)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b)′(u)(x, t)z(x, t)ez · ϕ(x) dx.

The continuity and Lipschitz property of DF is then easily derived from these formulas
and the choice of Y, see Assumption 4.1.

It can be checked that equation (2.11) can be written in the abridged form, with
obvious notation,

F(U) = 0. (4.6)

On the other hand, the residual equation satisfied by Uτ = (uτ , π
+
τ q), where the (un, qn)

are the solutions of problem (3.1)− (3.2), reads, for all t in [tn−1, tn],

∀w ∈ L2(Ω), 〈F1(Uτ )(t), w〉 =

∫
Ω

(
∂t
(
b(uτ )− bτ (uτ )

))
(x, t)w(x) dx,

∀ϕ ∈ HF (div,Ω), 〈F2(Uτ )(t),ϕ〉 = −
∫

Ω

(uτ − un)(x, t)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b(uτ )− k ◦ b(un−1)

)
(x, t)ez · ϕ(x) dx,

(4.7)

where bτ (uτ ) stands for the function which is affine on each interval [tn−1, tn], 1 ≤ n ≤ N ,
and equal to b(un) in tn, 0 ≤ n ≤ N . We are thus in a position to apply the theorem of
Pousin and Rappaz [20] in its more precise form given in [29, Prop. 2.1].
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We need the lifting operator L which associates with any function g in the dual space

of H
1
2
00(ΓF ) the function gradχ, where χ is the solution of the problem{−∆χ = 0 in Ω,

χ = 0 on ΓD,
∂nχ = g on ΓF .

(4.8)

It is readily checked that L is continuous from H
1
2
00(ΓF )′ into H(div,Ω). In what follows,

we denote by [[·]] the norm of a continuous linear mapping from a Banach space into another
one (without making precise the spaces for simplicity). We finally define the quantities

ε
n(τ)
K = ‖

(
b′(uhτ )−Bnh

)unh − un−1
h

τn
‖L2(tn−1,tn;L2(K)). (4.9)

Proposition 4.3. If Assumption 4.1 is satisfied, for any solution U = (u, q) of problem
(2.10)− (2.11) in Y×L2(0, T ;H(div,Ω)) such that DF(U) is an isomorphism in L , there
exists a bounded neighbourhood of U in Y × L2(0, T ;H(div,Ω)) such that the following
a posteriori estimate holds for any solution Uτ = (uτ , π

+
τ q) associated with problems

(3.1)− (3.2) in this neighbourhood

sup
0≤t≤T

‖(u− uτ )(·, t)‖L2(Ω) + α
1
2 ‖∂t(u− uτ )‖L2(0,T ;L2(Ω)) + ‖q − π+

τ q‖L2(0,T ;H(div,Ω))

≤ c
(( N∑

n=1

∑
K∈T n

h

(
(η
n(τ)
K )2 + (ε

n(τ)
K )2

)) 1
2

+‖uτ − uhτ‖L2(0,T ;L2(Ω))

+ max
0≤n≤N

‖un − unh‖L2(Ω) + α
1
2 ‖∂t(uτ − uhτ )‖L2(0,T ;L2(Ω))

+ ‖f − π+
τ f‖

L2(0,T ;H
1
2
00(ΓF )′)

)
.

(4.10)
where the constant c only depends on α and the norm [[DF(U)−1]].

Proof: As previously, we set:

Ũ =
(
u− u0, q − Lf(·, t)

)
, Ũτ =

(
uτ − u0, π

+
τ (q − Lf(·, t))

)
.

Due to the continuity of L and with obvious notation, we have

‖q − π+
τ q‖L2(0,T ;H(div,Ω)) ≤ ‖q̃ − π̃+

τ q‖L2(0,T ;H(div,Ω)) + c ‖f − π+
τ f‖

L2(0,T ;H
1
2
00(ΓF )′)

.

Owing to Lemma 4.2, applying a slight extension of [29, Prop. 2.1] to the mapping F̃
defined by F̃(Ũ) = F(U) yields

sup
0≤t≤T

‖(u− uτ )(·, t)‖L2(Ω) + α
1
2 ‖∂t(u− uτ )‖L2(0,T ;L2(Ω)) + ‖q̃ − π̃+

τ q‖L2(0,T ;H(div,Ω))

≤ c
(
‖∂t
(
b(uτ )− bτ (uτ )

)
‖L2(0,T ;L2(Ω))

+ ‖uτ − π+
τ u‖L2(0,T ;L2(Ω)) + ‖k ◦ b(uτ )− k ◦ b(π−τ u)‖L2(0,T ;L2(Ω))

)
.
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We now evaluate successively the three terms in the right-hand side of this inequality,
beginning by the last two ones which are easier to handle.
1) We start from the triangle inequality

‖uτ − π+
τ u‖L2(0,T ;L2(Ω)) ≤ ‖uτ − uhτ‖L2(0,T ;L2(Ω))

+ ‖π+
τ (u− uh)‖L2(0,T ;L2(Ω)) + ‖uhτ − π+

τ uh‖L2(0,T ;L2(Ω)),

and observe by the same arguments as in [3, Lemma 2.1] that

‖π+
τ (u− uh)‖L2(0,T ;L2(Ω)) =

( N∑
n=1

τn‖un − unh‖2L2(Ω)

) 1
2 ≤ c ‖uτ − uhτ‖L2(0,T ;L2(Ω)).

On the other hand, it follows from the formula, valid on each interval ]tn−1, tn],

uτ = un − tn − t
τn

(un − un−1).

that

‖uhτ − π+
τ uh‖2L2(0,T ;L2(Ω)) =

N∑
n=1

τn
3
‖unh − un−1

h ‖2L2(Ω).

All this yields

‖uτ − π+
τ u‖L2(0,T ;L2(Ω))

≤ c ‖uτ − uhτ‖L2(0,T ;L2(Ω)) +
1√
3

( N∑
n=1

τn ‖unh − un−1
h ‖2L2(Ω)

) 1
2

.
(4.11)

2) Since both functions k and b are Lipschitz-continuous, we have

‖k ◦ b(uτ )− k ◦ b(π−τ u)‖L2(0,T ;L2(Ω)) ≤ c ‖uτ − π−τ u‖L2(0,T ;L2(Ω)).

By using the same arguments as previously (in particular a modified version of [3, Lemma
2.1]) and the formula

uτ = un−1 +
t− tn−1

τn
(un − un−1),

we derive

‖k ◦ b(uτ )− k ◦ b(π−τ u)‖L2(0,T ;L2(Ω))

≤ c
(
‖uτ − uhτ‖L2(0,T ;L2(Ω)) +

( N∑
n=1

τn ‖unh − un−1
h ‖2L2(Ω)

) 1
2

)
.

(4.12)

3) Here, we use the triangle inequality

‖∂t
(
b(uτ )− bτ (uτ )

)
‖L2(0,T ;L2(Ω)) ≤ ‖∂t

(
b(uτ )− b(uhτ )

)
‖L2(0,T ;L2(Ω))

+ ‖∂t
(
bτ (uτ )− bτ (uhτ )

)
‖L2(0,T ;L2(Ω)) + ‖∂t

(
b(uhτ )− bτ (uhτ )

)
‖L2(0,T ;L2(Ω)).
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To bound the first term, we observe that

∂t
(
b(uτ )− b(uhτ )

)
= b′(uτ ) ∂tuτ − b′(uhτ ) ∂tuhτ

=
(
b′(uτ )− b′(uhτ )

)
∂tuτ + b′(uhτ ) ∂t(uτ − uhτ ).

We thus combine the boundedness of b′ and its Lipschitz property, see Assumption 4.1,
with the boundedness of ∂tuτ in L∞(Ω) (indeed, uτ belongs to a bounded neighbourhoood
of u in Y). This leads to

‖∂t
(
b(uτ )− b(uhτ )

)
‖L2(0,T ;L2(Ω))

≤ c
(

max
0≤n≤N

‖un − unh‖L2(Ω) + ‖∂t(uτ − uhτ )‖L2(0,T ;L2(Ω))

)
.

To bound the second term, we note that bτ (uτ ) is the Lagrange interpolate of b(uτ ) in
piecewise affine functions. Thus, using the stability of the corresponding interpolation
operator in H1(0, T ), we obtain

‖∂t
(
bτ (uτ )− bτ (uhτ )

)
‖L2(0,T ;L2(Ω)) ≤ c ‖∂t

(
b(uτ )− b(uhτ )

)
‖L2(0,T ;L2(Ω)),

and we use the previous estimate. Finally, to bound the third term, we use the expansion
on the interval [tn−1, tn]

∂t
(
b(uhτ )− bτ (uhτ )

)
= b′(uhτ )

unh − u
n−1
h

τn
−
b(unh)− b(un−1

h )

τn
.

Thus, it follows from the definition (4.9) and a triangle inequality that

‖∂t
(
b(uhτ )− bτ (uhτ )

)
‖L2(tn−1,tn;L2(K))

≤ τ
1
2
n ‖

b(unh)− b(un−1
h )

τn
−Bnh

unh − u
n−1
h

τn
‖L2(K) + ε

n(τ)
K .

Combining all this gives

‖∂t
(
b(uτ )− bτ (uτ )

)
‖L2(0,T ;L2(Ω))

≤ c
(

max
0≤n≤N

‖un − unh‖L2(Ω) + ‖∂t(uτ − uhτ )‖L2(0,T ;L2(Ω))

+
( N∑
n=1

∑
K∈T n

h

(
τn ‖Bnh

unh − u
n−1
h

τn
−
b(unh)− b(un−1

h )

τn
‖2L2(K) + (ε

n(τ)
K )2

)) 1
2

)
.

(4.13)

Owing to the definition (4.1) of the η
n(τ)
K , the desired estimate is now a direct consequence

of (4.11), (4.12), and (4.13).

Remark 4.4. Due to Assumption 4.1, we have

ε
n(τ)
K ≤ τ

1
2
n

(
sup
x∈In

h

|b′′(x)|
)
‖unh − un−1

h ‖L∞(K)‖
unh − u

n−1
h

τn
‖L2(K), (4.14)

21



where Inh stands for a small interval only depending on the minimal and maximal values
of un−1

h and unh. So, at least when the quantity ‖unh − u
n−1
h ‖L∞(Ω) tends to zero, which is

rather likely, the quantity ε
n(τ)
K can be considered as negligible. Moreover, it is zero when

b′ is constant on Inh .

We now bound the error betweeen Uτ = (uτ , π
+
τ q) and Uhτ = (uhτ , π

+
τ qh) by very

similar but simpler arguments. Indeed, let us introduce the mapping Fτ = (F1τ ,F2τ )
defined with the notation U = (u, q) and for a.e. t in [0, T ] by

∀w ∈ L2(Ω), 〈F1τ (U)(t), w〉 = α

∫
Ω

(∂tu)(x, t)w(x) dx+

∫
Ω

(
∂tbτ (u)

)
(x, t)w(x) dx

+

∫
Ω

(
∇ · q

)
(x, t)w(x) dx,

∀ϕ ∈ HF (div,Ω), 〈F2τ (U)(t),ϕ〉 =

∫
Ω

q(x, t) · ϕ(x) dx−
∫

Ω

π+
τ u(x, t)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b(π−τ u)

)
(x, t)ez · ϕ(x) dx+ 〈uD,ϕ · n〉ΓD .

(4.15)
The solution Uτ = (uτ , π

+
τ q) associated with problems (3.1) − (3.2) satisfies Fτ (Uτ ) = 0,

while the solution Uhτ = (uhτ , π
+
τ qh) associated with problems (3.12)− (3.13) satisfies, for

all t in [tn−1, tn]

〈F1τ (Uhτ )(t), w〉 = α

∫
Ω

(unh − un−1
h

τn

)
(x)w(x) dx

+

∫
Ω

(b(unh)− b(un−1
h )

τn

)
(x)w(x) dx+

∫
Ω

(
∇ · qnh

)
(x)w(x) dx,

〈F2τ (Uhτ )(t),ϕ〉 =

∫
Ω

qnh(x) · ϕ(x) dx−
∫

Ω

unn(x)(∇ ·ϕ)(x) dx

+

∫
Ω

(
k ◦ b(un−1

h )
)
(x)ez · ϕ(x) dx+ 〈uD,ϕ · n〉ΓD .

(4.16)

We omit the proof of the next lemma, since it results from the definition of DFτ .

Lemma 4.5. If Assumption 4.1 is satisfied, the mapping Fτ is continuously differentiable
on the space Y × L2(0, T ;H(div,Ω)) with values in L and, moreover, the operator DFτ
is locally Lipschitz-continuous on this same space.

We can now prove the second error estimate. This requires the quantities

ε
n(h)
K = ‖(Id−Πn

h)
(unh − un−1

h

τn

)
‖L2(K) + ‖(Id−Πn

h)
(b(unh)− b(un−1

h )

τn

)
‖L2(K)

+ ‖(Id−Πn
h)k ◦ b(un−1

h )‖L2(K).

(4.17)

As already hinted in Remark 3.5, they are not 0 only for the K where the triangulation
T nh is coarsened with respect to T n−1

h .
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Proposition 4.6. If Assumption 4.1 is satisfied, for any solution Uτ = (uτ , π
+
τ q) as-

sociated with problems (3.1) − (3.2) in Y × L2(0, T ;H(div,Ω)) such that DFτ (Uτ ) is an
isomorphism in L , there exists a neighbourhood of Uτ in Y×L2(0, T ;H(div,Ω)) such that
the following a posteriori estimate holds for any solution Uhτ = (uhτ , π

+
τ qh) associated with

problems (3.12)− (3.13) in this neighbourhood

sup
0≤t≤T

‖(uτ − uhτ )(·, t)‖L2(Ω) + α
1
2 ‖∂t(uτ − uhτ )‖L2(0,T ;L2(Ω))

+ ‖π+
τ (q − qh)‖L2(0,T ;H(div,Ω))

≤ c(τ)

(( N∑
n=1

∑
K∈T n

h

(
(η
n(h)
K )2 + (ε

n(h)
K )2

)) 1
2

+‖u0 − u0h‖L2(Ω)

+
( N∑
n=1

τn
(
‖f(·, tn)− fnh ‖2

H
1
2
00(ΓF )′

+ ‖uD(·, tn)− unDh‖2
H

1
2 (ΓD)

) 1
2

)
,

(4.18)

where c(τ) only depends on the norm [[DFτ (Uτ )−1]].

Proof: Here, we set:

Ũτ = Uτ − (u0, π
+
τ `), with `n = Lf(·, tn),

Ũhτ = Uhτ − (u0h, π
+
τ `h), with `nh = Lfnh ,

where the operator L is defined from (4.8). To bound the error, we observe that

‖Uτ − Uhτ‖X×L2(0,T ;H(div,Ω)) ≤ ‖Ũτ − Ũhτ‖X×L2(0,T ;H(div,Ω))

+ ‖u0 − u0h‖L2(Ω) +
( N∑
n=1

τn ‖L
(
f(·, tn)− fnh

)
‖2H(div,Ω)

) 1
2

,

and bounding the last term follows from the continuity of L. To estimate the first one, we
apply [29, Prop. 2.1] to the function F̃τ defined by F̃τ (Ũτ ) = Fτ (Uτ ). This gives

‖Ũτ − Ũhτ‖X×L2(0,T ;H(div,Ω))

≤ c(τ)
(
‖F1τ (Uhτ )‖L2(0,T ;L2(Ω)) + ‖F2τ (Uhτ )‖L2(0,T ;HF (div,Ω)′)

)
.

Owing to (4.16), evaluating the right-hand side relies on an integration by parts on each
K for the second component F2τ (Uhτ ) and also on the inverse inequality, valid for each
ϕh in P1(e), e ∈ E0

K ∪ EFK , (note that this requires the introduction of unDh)

‖ϕh‖
H

1
2 (e)
≤ c h−

1
2

K ‖ϕh‖L2(e).

We conclude with triangle inequalities which involve the ε
n(h)
K .
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Remark 4.7. The following equality holds for each piecewise affine function vτ ,

sup
0≤t≤T

‖vτ (·, t)‖L2(Ω) + α
1
2 ‖∂tvτ‖L2(0,T ;L2(Ω))

= max
0≤n≤N

‖vn‖L2(Ω) +
(
α

N∑
n=1

τn ‖
vn − vn−1

τn
‖2L2(Ω)

) 1
2 .

(4.19)

So the norm which appears in the left-hand side of (4.18) is in fact semi-discrete in time.

To make the statement of Proposition 4.6 more complete, we now prove that, in most
cases, the quantity [[DFτ (Uτ )−1]] is bounded independently of τ .

Lemma 4.8. Assume that the solution Uτ associated with problems (3.1)− (3.2) satisfies

lim
|τ |→0

max
1≤n≤N

‖un − un−1‖L∞(Ω) = 0. (4.20)

Let U = (u, q) be any pair in Y × L2(0, T ;H(div,Ω)) such that DF(U) is an isomor-
phism in L . Thus, there exists a constant τ0 > 0 and a neighbourhood of U in Y ×
L2(0, T ;H(div,Ω)) such that, for any τ , |τ | ≤ τ0, and for any pair Uτ in this neighbour-
hood,
(i) DFτ (Uτ ) is an isomorphism in this same space,
(ii) the norm of its inverse is bounded independently of τ .

Proof: We use the expansion

DFτ (Uτ ) = DF(U)−
(
DF(U)−DF(Uτ )

)
−
(
DF(Uτ )−DFτ (Uτ )

)
.

So, there exists a constant c only depending on [[DF(U)−1]] such that the desired result
holds when

[[DF(U)−DF(Uτ )]] ≤ c, [[DF(Uτ )−DFτ (Uτ )]] ≤ c.

For an appropriate choice of the neighbourhood of U , the first inequality is a direct con-
sequence of the Lipschitz property of DF , see Lemma 4.2. On the other hand, we have,
for each t in [tn−1, tn],

〈
(
DF1 −DF1τ

)
(Uτ )(t) · Z,w〉 =

∫
Ω

(
b′(uτ )− b(un)− b(un−1)

τn

)
(x, t)(∂tz

)
(x, t)w(x) dx

+

∫
Ω

(
b′′(uτ )− b′(un)− b′(un−1)

τn

)
(x, t)z(x, t)

(
∂tu
)
(x, t)w(x) dx,

〈
(
DF2 −DF2τ

)
(Uτ )(t) · Z,ϕ〉 = −

∫
Ω

(z − π+
τ z)(x, t)(∇ ·ϕ)(x) dx

+

∫
Ω

(
(k ◦ b)′(uτ )− (k ◦ b)′(π−τ u)

)
(x, t)z(x, t)ez · ϕ(x) dx,
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so that the second inequality follows from assumption (4.20) combined with the properties
of b and k.

Note that assumption (4.20) is not restrictive and should follow from the convergence
of the Euler scheme.

4.4. Upper bounds for the indicators.

We bound successively all the indicators introduced in Section 4.2. Note that evalu-

ating the indicators η
n(τ)
K requires a preliminary lemma that we now state and prove. We

need the following notation: For each z0 in R, Ωz0 and Γz0D denotes the intersection of Ω
and ΓD, respectively, with the line or plane z = z0.

Lemma 4.9. Assume that, for each z in R, and for each connected component Ωzk of Ωz,
the measure of ΓzD ∩ ∂Ωzk is positive. For any function g in L2(Ω), there exists a function
ϕ = (ϕx, ϕy, 0) in HF (div,Ω) such that

∇ ·ϕ = g in Ω and ‖ϕ‖H(div,Ω) ≤ c ‖g‖L2(Ω). (4.21)

Proof: Assuming that the domain Ω lies between the lines or planes z = z1 and z = z2.
For a.e. z in ]z1, z2[, and for each connected component Ωzk, we solve the (d−1)-dimensional
problem, in dimension d = 3 for instance: Find ψ in H1

D(Ωzk) (with obvious notation for
this space) such that

∀χ ∈ H1
D(Ωzk),

∫
Ωz
k

(
(∂xψ)(x, y)(∂xχ)(x, y) + (∂yψ)(x, y)(∂yχ)(x, y)

)
dxdy

= −
∫

Ωz
k

g(x, y, z)χ(x, y) dxdy.

Thus, the vector field ϕ = (∂xψ, ∂yψ, 0) satisfies the first part of (4.21). On the other
hand, the second part of (4.21) follows from the Poincaré-Friedrichs inequality

∀χ ∈ H1
D(Ωzk), ‖χ‖L2(Ωz

k
) ≤ cz

(
‖∂xχ‖L2(Ωz

k
) + ‖∂yχ‖L2(Ωz

k
)

)
.

To conclude, we note that that each Ωzk is, up to an homothety, an interval or a polygon
in a finite family of polygons (where “finite” means only depending on Ω) with possible
small diameter. Thus, it is readily checked that cz is bounded independently of z.

Note that assumptions of Lemma 4.9 are not restrictive and can be avoided by using
more sophisticated arguments.
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Proposition 4.10. If the assumptions of Lemma 4.9 hold, the following estimate holds

for the indicators η
n(τ)
K defined in (4.1), 1 ≤ n ≤ N :

( ∑
K∈T n

h

(η
n(τ)
K )2

) 1
2

≤ c
(
α ‖∂t(u− uτ )‖L2(tn−1,tn;L2(Ω)) + ‖∂t

(
b(u)− b(uτ )

)
‖L2(tn−1,tn;L2(Ω))

+ ‖q − π+
τ q‖L2(tn−1,tn;H(div,Ω)) + ‖∂t

(
b(uτ )− b(uhτ )

)
‖L2(tn−1,tn;L2(Ω))

+
( ∑
K∈T n

h

(ε
n(τ)
K )2

) 1
2

)
.

(4.22)

Proof: We bound successively the two terms in the η
n(τ)
K .

1) Using the first lines in (4.4) and in the residual equation (4.7), we obtain, for all t in
[tn−1, tn],

‖∂t
(
b(uτ )− bτ (uτ )

)
‖L2(Ω) ≤ α ‖∂t(u− uτ )‖L2(Ω)) + ‖∂t

(
b(u)− b(uτ )

)
‖L2(Ω)

+ ‖q − qτ‖H(div,Ω).

We also have the triangle inequality

‖∂t
(
b(uhτ )− bτ (uhτ )

)
‖L2(Ω) ≤ ‖∂t

(
b(uτ )− bτ (uτ )

)
‖L2(Ω)

+ ‖∂t
(
b(uτ )− b(uhτ )

)
‖L2(Ω) + ‖∂t

(
bτ (uτ )− bτ (uhτ )

)
‖L2(Ω).

Integrating the square of these inequalities on [tn−1, tn], noting that bτ is the Lagrange
intepolate of b in the space of piecewise affine functions and using the stability of the
corresponding interpolation operator in H1(0, T ) finally give

‖∂t
(
b(uhτ )− bτ (uhτ )

)
‖L2(tn−1,tn;L2(Ω))

≤ c
(
α ‖∂t(u− uτ )‖L2(tn−1,tn;L2(Ω)) + ‖∂t

(
b(u)− b(uτ )

)
‖L2(tn−1,tn;L2(Ω))

+ ‖q − qτ‖L2(tn−1,tn;H(div,Ω)) + ‖∂t
(
b(uτ )− b(uhτ )

)
‖L2(tn−1,tn;L2(Ω))

)
.

Then, the desired bound for the last term in (4.1) follows from the definition (4.9) of the

ε
n(τ)
K and a triangle inequality.

2) With the function g = uτ − un, we associate the function ϕ exhibited in Lemma 4.9.
By inserting this ϕ in (4.11) and noting that F2(U) is zero, we obtain the bound for the
first term in (4.1).

Bounding the indicators η
n(h)
K defined in (4.2) relies on more standard arguments, see

[29, Chap. 3].
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Proposition 4.11. The following estimate holds for the indicators η
n(h)
K defined in (4.2),

1 ≤ n ≤ N , K ∈ T nh :

η
n(h)
K ≤ c

(
α ‖∂t(uτ − uhτ )‖L2(tn−1,tn;L2(ωK))

+ ‖∂t
(
b(uτ )− b(uhτ )

)
‖L2(tn−1,tn;L2(ωK)) + ‖π+

τ (uτ − uhτ )‖L2(tn−1,tn;L2(ωK))

+ ‖π+
τ (q − qh)‖L2(tn−1,tn;H(div,ωK)) + ε

n(h)
K

)
.

(4.23)

Proof: There also, we bound successively the different terms in the η
n(h)
K .

1) For each K in T nh , we set

wK =

{(
α
unh−Πnhu

n−1
h

τn
+

b(unh)−Πnhb(u
n−1
h

)

τn
+∇ · qnh

)
ψK on K,

0 on Ω \K,

where ψK stands for the bubble function on K (equal to the product of the barycentric
coordinates associated with the vertices of K). Taking w equal to wK in the first lines of
(4.15) and (4.16) and using triangle inequalities thus yield

‖
(
α
unh −Πn

hu
n−1
h

τn
+
b(unh)−Πn

hb(u
n−1
h )

τn
+∇ · qnh

)
ψ

1
2

K‖
2
L2(K)

≤
(
α ‖∂t(uτ − uhτ )‖L2(K) + ‖∂t

(
b(uτ )− b(uhτ )

)
‖L2(K)

+ ‖π+
τ (q − qh)‖H(div,K) + ε

n(h)
K

)
‖wK‖L2(K).

By noting that wK is a constant times ψK on K, using the inverse inequalities (see [29,
Lemma 1.3] for instance)

∀v ∈ P0(K), ‖v‖L2(K) ≤ c ‖v ψ
1
2

K‖L2(K) and ‖v ψK‖L2(K) ≤ ‖v ψ
1
2

K‖L2(K),

and integrating the square of the previous estimate between tn−1 and tn, we obtain the

desired bound for τ
1
2
n ‖α

unh−Πnhu
n−1
h

τn
+

b(unh)−Πnhb(u
n−1
h

)

τn
+∇ · qnh‖L2(K).

2) Similarly, we set

ϕK =

{(
qnh + Πn

hk ◦ b(u
n−1
h )ez

)
ψK on K,

0 on Ω \K.

By taking ϕ equal to ϕK in the second lines of (4.15) and (4.16) and using a further
integration by parts together wih the same inverse inequality as above, we derive the

desired bound for τ
1
2
n ‖qnh + Πn

hk ◦ b(u
n−1
h )ez‖L2(K)d .

3) For each e in E0
K , denoting by K and K ′ the two elements of Th that share e, we set

ϕe =

{
Le,κ

(
[unh]e ψe

)
on κ ∈

{
K,K ′

}
,

0 on Ω \ (K ∪K ′).
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Here ψe is now the bubble function on e and Le,κ is a lifting operator of the normal trace;
it is defined from L2(e) into the space of functions in H(div, κ) with zero normal traces
on ∂K \ e and is constructed from the harmonic lifting operator on a reference element K̂.
The following inequality is thus readily checked, for any qe in P0(e)

‖Le,κ(qe)‖H(div,κ) ≤ c h
1
2
e ‖qe‖L2(e).

Taking ϕ equal to ϕe in the second lines of (4.15) and (4.16), using this inequality and

the previous results lead to the bound for τ
1
2
n h
− 1

2
e ‖[unh]e‖L2(e).

4) Finally, for each e in EDK , we set

ϕe =

{
Le,K

(
unh − unDh

)
on K,

0 on Ω \K.

Exactly the same arguments as previously, combined with a separate treatment of the

terms unh − unDh and unD − unDh yields the bound for τ
1
2
n h
− 1

2
e ‖unh − unDh‖L2(e).

This concludes the proof.

4.5. Conclusions.

Let us introduce the full error

E = sup
0≤t≤T

‖(u− uτ )(·, t)‖L2(Ω) + α
1
2 ‖∂t(u− uτ )‖L2(0,T ;L2(Ω))

+ ‖q − π+
τ q‖L2(0,T ;H(div,Ω))

+ sup
0≤t≤T

‖(uτ − uhτ )(·, t)‖L2(Ω) + α
1
2 ‖∂t(uτ − uhτ )‖L2(0,T ;L2(Ω))

+ ‖π+
τ (q − qh)‖L2(0,T ;H(div,Ω)),

(4.24)

and also the terms depending on the data

ε(d) = ‖u0 − u0h‖L2(Ω) + ‖f − π+
τ f‖

L2(0,T ;H
1
2
00(ΓF )′)

+
( N∑
n=1

τn
(
‖f(·, tn)− fnh ‖2

H
1
2
00(ΓF )′

+ ‖uD(·, tn)− unDh‖2
H

1
2 (ΓD)

)) 1
2

,
(4.25)

and finally the terms due to the time or space interpolation of the coefficients

ε(c) =
( N∑
n=1

∑
K∈T n

h

(
(ε
n(τ)
K )2 + (ε

n(h)
K )2

)) 1
2

. (4.26)
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Next, we make the following hypotheses:
(i) Assumption 4.1 holds;
(ii) The solution (u, q) of problem (2.10) − (2.11) belongs to Y × L2(0, T ;H(div,Ω)) and
DF(U) is an isomorphism in L ;
(iii) The solution (uτ , π

+
τ q) associated with (3.1)−(3.2) belongs to Y×L2(0, T ;H(div,Ω));

(iv) The quantity |τ | is smaller than τ0 (see Lemma 4.8);
(v) The assumptions of Lemmas 4.8 and 4.9 hold.
Thus, the following equivalence property is satisfied

c

(( N∑
n=1

∑
K∈T n

h

(η
n(τ)
K + η

n(h)
K )2

) 1
2−ε(d) − ε(c)

)
≤ E

≤ c′
(( N∑

n=1

∑
K∈T n

h

(η
n(τ)
K + η

n(h)
K )2

) 1
2

+ε(d) + ε(c)

)
.

This result is fully optimal. Note also that a simple appropriate choice of the time steps
and the meshes makes the quantity ε(d) negligible in comparison with the Hilbertian sum
of the indicators. Finally, for reasons explained above, ε(c) is most often negligible.

Remark 4.12. The assumption that u and uτ belong to Y is rather strong and could be
weakened by using more technical arguments that we prefer to avoid here. Moreover it is
not unlikely in all cases: For instance, if the domain Ω is two-dimensional and convex, for
smooth enough data, the solution u belongs to L2(0, T ;H2(Ω)) and to H1(0, T ;L2(Ω)),
hence to C 0(0, T ;Lp(Ω)) for any p, 1 ≤ p < +∞; similar results can be obtained for ∂tu
by differentiating equation (2.1) with respect to t and also for uτ by simpler arguments.

Finally, estimate (4.22) is local in time and estimate (4.23) is local in space and time.

Thus, the indicators η
n(τ)
K and η

n(h)
K seem to be the right tools for an efficient adaptation

strategy.
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5. An adaptivity strategy and numerical experiments.

We first describe an adaptivity strategy which relies on the error indicators introduced
in Section 4.2. Next, we check the efficiency of this strategy by presenting some numerical
experiments. All of them have been performed on the finite element code FreeFem++, see
[17].

5.1. An adaptivity strategy.

The strategy that we now propose is very similar to that in [4, §6], even if the problem
that we consider is rather different. Let η∗ be a fixed tolerance.

Initialization: We first choose an initial time step τ0 such that

‖f − π+
τ f‖

L2(t0,t1;H
1
2
00(ΓF )′)

≤ η∗. (5.1)

Indeed this term appears in the definition (4.25) of ε(d). Next, we choose the triangulation
T 0
h = T 1

h such that all other terms which appear in ε(d) and only depend on the data on
the interval [t0, t1] are small enough, which means:

‖u0 − u0h‖L∞(Ω) + τ
1
2

1

(
‖f(·, t1)− f1

h‖
H

1
2
00(ΓF )′

+ ‖uD(·, t1)− u1
Dh‖H 1

2 (ΓD)

)
≤ η∗. (5.2)

We then compute the solution (u1
h, q

1
h) of problem (3.12)− (3.13).

Time adaptivity: Assuming that the time step τn, the mesh T nh and the discrete solution
unh are known, we first choose τn+1 equal to τn and T n+1

h equal to T nh . We compute a
first solution (un+1

h , qn+1
h ) of problem (3.12) − (3.13), the corresponding error indicators

η
n+1(τ)
K defined in (4.1) and their Hilbertian sum

η
n+1(τ)
h =

( ∑
K∈T n+1

h

(η
n+1(τ)
K )2

) 1
2

. (5.3)

Next,

• if η
n+1(τ)
h is smaller than η∗, we proceed to the spatial adaptivity step;

• if not, we divide τn+1 by two (or by a constant times η
n+1(τ)
h /η∗) and perform a new

computation.
Of course, this step can be iterated a number of times. This leads to the final value of
τn+1.

Space adaptivity: Assuming that the time step τn+1 is known and that a first solution

(un+1
h , qn+1

h ) has been computed on the mesh T n+1
h , we compute the indicators η

n+1(h)
K ,
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K ∈ T n+1
h , and their mean value ηn+1. Then, we perform mesh adaptivity in the usual way:

The diameter of any element in the new triangulation which contains or is contained in an

element K of T n+1
h is proportional to the diameter of K times the ratio ηn+1/η

n+1(h)
K . We

refer to [10, Chap. 21] for the way of constructing such a mesh. This step can be iterated
three or four times, and the final mesh is called T n+1

h .

Remark 5.1. At each step of time or space adaptivity, we must verify that the new terms
which appear in ε(d), namely

‖f − π+
τ f‖

L2(tn,tn+1;H
1
2
00(ΓF )′)

+ τ
1
2
n+1

(
‖f(·, tn+1)− fn+1

h ‖
H

1
2
00(ΓF )′

+ ‖uD(·, tn+1)− un+1
Dh ‖H 1

2 (ΓD)

)
,

remain smaller than η∗. If it is not the case, a further adaptation is needed to handle these
terms.

Remark 5.2. The a priori estimates (see [21, Section 4.2] for instance) indicate that, for
a smooth solution (u, q), the global error behaves like c (δt + h). So no convergence can
be hoped when performing only time adaptivity or only space adaptivity. On the other
hand, when the τn+1 resulting from time adaptivity is much smaller than τn, it could be
reasonable to also replace the initial triangulation T n+1

h by a new one which is uniformly
refined from T nh .

5.2. Validation of the discretization.

We work on the model domain

Ω =]0, 1[2, ΓF = {1}×]0, 1[, ΓD = ∂Ω \ ΓF , T = 5, (5.4)

with the simple coefficients

α = 0.01, b(x) =
x3

3
, k = 0. (5.5)

The data are given by

u0(x, y) = 0, uD(0, y) =

{
exp(t) y2( 1

2 − y)2 if 0 ≤ y ≤ 1
2 ,

0 if 1
2 ≤ y ≤ 1,

uD(x, 0) = uD(x, 1) = 0, f(1, y) = 1.

(5.6)

We first compute a reference solution, denoted by (uref , qref) for a very small time step
τ = 10−3 and on a uniform very fine mesh made of 5932 triangles. Figure 1 presents the
isovalues of the part uref of this solution at the final time T .
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Figure 1. The isovalues of the reference solution uref at the final time

In a first step we do not perform adaptivity, i.e., we work with a fixed time step τ and
all triangulations T nh equal to Th which is uniform. In the following tables, we present the
errors at the final time T = tN (indeed, it is too expensive to keep in memory the values
of (uref , qref) on the whole time interval), namely

Eu = ‖uref(·, tN )− uNh ‖L2(Ω),

E∂tu = τ−
1
2 ‖(uref(·, tN )− uNh )− (uref(·, tN−1)− uN−1

h )‖L2(Ω),

Eq = τ
1
2 ‖qref(·, tN )− qNh ‖H(div,Ω)),

(5.7)

and the Hilbertian sum of the indicators

η
N(τ)
1 = τ

1
2 ‖uNh − uN−1

h ‖L2(Ω),

η
N(τ)
2 = τ

1
2 ‖
b(uNh )− b(uN−1

h )

τ
−BNh

uNh − u
N−1
h

τ
‖L2(Ω),

η
N(h)
1 = τ

1
2 ‖α

uNh − u
N−1
h

τ
+
b(uNh )− b(uN−1

h )

τ
+∇ · qNh ‖L2(Ω),

η
N(h)
2 = τ

1
2 ‖qNh ‖L2(Ω)d , η

N(h)
3 = τ

1
2

(∑
e∈E0

h

h−1
e ‖[uNh ]e‖2L2(e)

) 1
2

,

(5.8)

first for τ fixed and h decreasing (Table 1), second for h fixed and τ decreasing (Table 2),
third for τ et h decreasing simultaneously (Table 3).
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h τ Eu E∂tu Eq η
N(τ)
1 η

N(τ)
2 η

N(h)
1 η

N(h)
2 η

N(h)
3

0.108 0.03125 0.02187 0.00427 0.28761 0.00197 0.08108 0.04686 0.55912 0.27086
0.05050 0.03125 0.01966 0.00450 0.15664 0.00206 0.05462 0.04801 0.59864 0.44028
0.03285 0.03125 0.01919 0.00456 0.11553 0.00207 0.04386 0.04039 0.60589 0.57340
0.02533 0.03125 0.01893 0.00458 0.09180 0.00208 0.03282 0.02777 0.61066 0.65367

Table 1. The errors and indicators for uniformly refined meshes

h τ Eu E∂tu Eq η
N(τ)
1 η

N(τ)
2 η

N(h)
1 η

N(h)
2 η

N(h)
3

0.03713 0.125 0.05053 0.01286 0.30305 0.01738 0.11002 0.09546 1.32405 2.18646
0.03713 0.0625 0.02700 0.00804 0.18353 0.00595 0.07048 0.06119 0.87980 1.02748
0.03713 0.03125 0.01790 0.00454 0.12406 0.00207 0.04750 0.04124 0.60308 0.49806
0.03713 0.015625 0.01516 0.00170 0.08666 0.00072 0.03280 0.02848 0.41989 0.24520

Table 2. The errors and indicators for decreasing time steps

h τ Eu E∂tu Eq η
N(τ)
1 η

N(τ)
2 η

N(h)
1 η

N(h)
2 η

N(h)
3

0.108 0.125 0.04196 0.01223 0.58873 0.01656 0.18834 0.10855 1.2274 1.18867
0.05050 0.0625 0.02723 0.00800 0.22919 0.00592 0.08103 0.07125 0.87333 0.90828
0.03285 0.03125 0.01919 0.00456 0.11553 0.00207 0.04386 0.04039 0.60589 0.57340
0.02533 0.015625 0.01540 0.00173 0.06347 0.00073 0.02266 0.01917 0.42514 0.32181

Table 3. The errors and indicators for uniformly refined meshes and decreasing time steps

From these tables, the convergence of the discretization in this situation is undeniable.
It is rather slow, which seems correct for a low order discretization of a nonlinear problem.

Remark 5.3. Since k is equal to zero, the only nonlinear term involves the time derivative.
It also follows from the previous calculation that the time error is now the leading term
in the error. As a consequence, refining the mesh does not improve the convergence. On
the other hand, since k is equal to zero and the discrete solution unh is piecewise constant,
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the indicator η
N(h)
2 involves the norm of qNh , so that it decreases only when τ diminishes.

A remedy to this consists in reinterpolating unh in an enriched space, as first proposed for
the Laplace equation in [30]. But, for simplicity, we prefer here to follow the approach in
[5]: In this paper, it is proved that, still in the simplest case of the Laplace equation, this
term can be omitted without destroying the optimality of the a posteriori estimates. So,

from now on, we do not compute the indicator η
N(h)
2 when the function k is zero.

5.3. Validation of the adaptivity strategy.

To check the efficiency of our adaptivity strategy, we work with the domain and final
time given by

Ω =]0, 1[2, ΓF = {1}×]0, 1[, ΓD = ∂Ω \ ΓF , T = 1, (5.9)

and the coefficients given in (5.5), but now for the exact solution

uex(x, y) = sin(πx) sin(πy) sin(10πxt). (5.10)

Indeed, uex now satisfies problem (2.1) with a non-zero datum g in the right-hand side
of the first equation. Of course, this induces a slight modification in the definition of

the η
n(h)
K , but the estimates established in Section 4 remain valid in this case (with some

further terms involving the function g and its approximation).

In the following Table 4, we present for some iterations n the time tn, the final adapted
time step τn, and the number of vertices Nn

h of the final adapted mesh T nh . It can be
observed that, even if in our adaptivity strategy we have decided not to increase τn, the
final result is reasonable.

n 1 8 13 26 42

tn 0.1 0.7 0.825 0.9 1
τn 0.1 0.0125 0.00625 0.00625 0.00625
Nn
h 49 236 554 1177 1923

Table 4. The parameters issued from adaptivity

Figures 2 and 3 present the adapted meshes at time T/2 = 0.5 and at time T = 1,
respectively. They fit very well the increasing oscillations of the solution.
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Figure 2. The final adapted mesh at time T/2

Figure 3. The final adapted mesh at time T

5.4. A more realistic experiment.
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We now work in the framework proposed in [6] (see also [16] for a very similar model),
where a sand ground is modelized. Numerical simulations of the flow have been performed
in [7] and [8], relying on finite element and finite volume discretizations, respectively.

The domain Ω here is a rectangle:

Ω =]0, 100[×]0, 40[, ΓD =]0, 100[×{0, 40}, ΓF = {0, 100}×]0, 40[, T = 1.
(5.11)

The coefficients of system (1.1) are defined by

Θ(h) =

{
β(βs−βr)
β+|100h|δ + βr if h < 0,

βs if h ≥ 0,
,

Kw

(
Θ(h)

)
=

{
Ks

A
A+|100h|ξ if h < 0,

Ks if h ≥ 0,

(5.12)

with constants given by

β = 0.075, βs = 0.287, βr = 0.075, δ = 3.96,

Ks = 0.00944, A = 1.175 × 106, ξ = 4.74.
(5.13)

From these equations, the coefficients b and k ◦ b of system (2.1) are easily recovered from
the Kirchoff’s change of unknowns, see Remark 2.1. The parameter α is arbitrarily chosen
equal to 0.01.

The boundary and initial data are specified on the unknown hw. They read

hw(x, 0; t) = −61.5, hw(x, 40; t) = −20.7,(
Kw

(
Θ(hw)

)∂hw
∂n

)
(0, z; t) =

(
Kw

(
Θ(hw)

)∂hw
∂n

)
(100, z; t) = 0,

hw(x, z; 0) = −61.5.

(5.14)

There also, the data uD, f and u0 can easily be recovered from that. Moreover, it can be
noted that the solution u, hence hw, are independent of x, so that the problem is in fact
one-dimensional.

Figure 4 (left part) presents the curves of the values of the solution u as a function
of z, z ∈]0, 40[ at different times t = 0.05, t = 0.1, t = 0.3, t = 0.67. The values of the
physical unknown hw at the same times are given in Figure 4 (right part).
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Figure 4. The solutions u and hw

These figures are very coherent with the curves in [6]. Moreover, we do think that our
adaptation process improves the efficiency of the computation.
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[9] P. Fabrié, T. Gallouët — Modelling wells in porous media flows, Math. Models Methods Appl.

Sci. 10 (2000), 673–709.

[10] P.J. Frey, P.-L. George — Maillages, applications aux éléments finis, Hermès (1999).
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